What new hydropower tech says about climate action
The presentation was from our ClimateTech event in 2022, when we invited scientists, engineers, and entrepreneurs in fields from fusion energy to agriculture to talk about their work. Gia Schneider, a cofounder of Natel Energy, was speaking about her company’s mission to design hydropower turbines that are safer for fish.
She showed images of fish that had been hit by conventional turbine blades, and let me tell you, it wasn’t good. When the fish hit those fast-moving pieces of metal, they quickly became … not exactly fish-shaped anymore. On the other hand, the fish swimming through Natel’s turbines seemed hardly bothered, curving around the blades and going on their merry way downstream.
Recently, I finally got the chance to chat with Schneider about how Natel is working to change hydropower technology and juggle climate action with freshwater ecosystems. Read all about it in my latest story, and in the meantime, here’s why I’ve been so obsessed with fish and hydropower tech.
Hydropower is the world’s leading source of renewable electricity. It often plays a crucial role balancing the grid, since hydroelectric plants with dams can store energy and be ramped up and down to help meet demand. When hydropower production goes down, as it did last year when droughts struck the western US, emissions go up.
But hydropower can also have a whole range of negative effects on the environment. Dams have contributed to a collapse in populations of migratory freshwater fish, which are down by more than 80% since 1970. (Mining and water diversion also play a role here, so we can’t entirely blame hydropower or even dams used for other purposes.)
Natel is attempting to make hydropower a bit more fish-friendly. Its turbines are curved in a different way and feature blunter edges that push water out in front of them, creating something of an “airbag for fish,” as Schneider puts it. That helps more fish pass through the power plants safely.
Now is a great time to reconsider the technology we use in hydropower plants, Schneider explains, because the fleet is aging, and many plants are due for recommissioning from regulators in the next decade or so.