Smudge before flight
It didn’t take long to find community on campus. To my surprise, out of the dozen students at a welcome event for the Indigenous community, three grad students and an undergrad were in the aero-astro department. As a prospective Course 16 major and a FIRST Robotics alum, I was excited to discover that they planned to start a new team for the First Nations Launch (FNL) rocketry competition, a NASA Artemis Student Challenge. It was the perfect opportunity to merge my technical passion with my cultural roots.
That first year, many people questioned the need for our team. “MIT already has a Rocket Team,” they’d say. But while most build teams are defined by the specific projects they work on, the product is just one aspect of the experience.
Yes, I’ve learned to design, build, launch, and safely recover a model rocket. But doing that alongside other Indigenous engineers on the team we call MIT Doya (ᏙᏯ, Cherokee for beaver) has taught me more than engineering skills. Beyond learning how to work with composites or design fins, I’ve learned how to navigate classes and connect with professors. I’ve learned about grad school. And I’ve learned how to celebrate my Indigenous identity and honor my ancestors with my work. For instance, we often hold smudging ceremonies—burning sage to purify ourselves or our rockets—at our team meetings and competitions.
Our team emphasizes universal consensus and buy-in on the technical side and pays attention to the success of each team member on a personal level. We call this gadugi (ᎦᏚᎩ) in Cherokee, or “everyone helping each other.”
I’ve also learned that embracing my culture can offer a better approach to engineering challenges. While many engineering settings foster top-down decision-making, our team tests and incorporates as many ideas as possible to engage everyone, emphasizing universal consensus and buy-in on the technical side while paying attention to the success of each team member on a personal level. We call this gadugi (ᎦᏚᎩ) in Cherokee, or “everyone helping each other.” And we find it’s led to better technical results—and a better experience for everyone on the team.
I feel incredibly fortunate to work closely with other Indigenous students on an engineering project we all deeply care about. I’ve looked up to the senior members of the team, seeing in them proof of what an Indigenous student at MIT can be and accomplish. And I’ve loved mentoring newer members, passing along what I’ve learned to help them excel.
Our launch weekends expand our community further, allowing us to work alongside inspiring Indigenous engineers from NASA’s Jet Propulsion Lab and Blue Origin. I’ve gotten to meet my heroes and seen that it’s possible to succeed as a Native American in aerospace engineering. In fact, my FNL experiences have already helped me secure an amazing internship. Last summer—exactly a decade after setting my heart on aerospace engineering at Space Camp—I returned to Huntsville as a lunar payloads intern on the Mark I Lunar Lander at Blue Origin.
Through the FNL team, I’ve significantly advanced my technical skills. As our systems and simulations lead the first year, I integrated all the components of the physical design into a cohesive computer model with accuracy in both geometry and mass distribution. From that model, I can run simulated flights while adjusting for various launch conditions and trying out different motors. A small change on the ground can yield a big change in our final altitude, which must be within a specific range—so this analysis drives the overall design.
In our first year, our challenge was to re-create the design of a kit rocket while making it lighter by fabricating all the parts ourselves, primarily using hand-laid carbon fiber and fiberglass. We finished in second place and were named Rookie Team of the Year.